A354665
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-3) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n
1, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1, 2, 4, 0, 1, 1, 3, 6, 3, 3, 0, 1, 4, 9, 8, 9, 0, 1, 1, 5, 13, 17, 18, 6, 4, 0, 1, 6, 18, 30, 36, 20, 16, 0, 1, 1, 7, 24, 48, 66, 55, 40, 10, 5, 0, 1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1, 1, 9, 39, 103, 186
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 0, 1; 1, 1, 2, 0; 1, 2, 4, 0, 1; 1, 3, 6, 3, 3, 0; 1, 4, 9, 8, 9, 0, 1; 1, 5, 13, 17, 18, 6, 4, 0; 1, 6, 18, 30, 36, 20, 16, 0, 1; 1, 7, 24, 48, 66, 55, 40, 10, 5, 0; 1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1; 1, 9, 39, 103, 186, 234, 221, 135, 75, 15, 6, 0; ...
Links
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Michael A. Allen, On A Two-Parameter Family of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.9.8.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:=If[k<0 || n
Formula
T(n,0) = 1.
T(n,n) = delta(n mod 2,0).
T(n,1) = n-2 for n>1.
T(2*j-r,2*j-1) = 0 for j>0, r=0,1.
T(2*(j-1)+p,2*(j-1)) = j^p for j>0 and p=0,1,2.
T(2*(j-1)+3,2*(j-1)) = j^2*(j+1)/2 for j>0.
T(2*j+p,2*j-p) = C(j+1,2)^p for j>0 and p=0,1,2.
G.f. of row sums: (1-x)/(1-2*x).
G.f. of sums of T(n-2*k,k) over k: (1-x^3)/((1-x-x^3)*(1+x^4-x^6)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=2*k+1 if k>=0.
Comments