A354673 Smallest number of unit cells that must be removed from an n X n square board in order to avoid any cycles.
0, 1, 2, 4, 6, 10, 13, 18, 22, 28, 34, 42, 49, 58, 66, 76, 86, 98, 109, 122, 134, 148, 162, 178, 193, 210, 226, 244, 262, 282, 301, 322, 342, 364, 386, 410, 433, 458, 482, 508, 534, 562, 589, 618, 646, 676, 706, 738, 769, 802, 834, 868, 902, 938, 973, 1010, 1046
Offset: 1
Examples
For n = 2, a(2) = 1, since removing any unit square from the 2 X 2 board leaves no cycles. For n = 5, a(5) = 6 removed unit squares can be arranged as follows: x**** *x*x* **x** *x*x* *****
Links
- Giedrius Alkauskas, Maximal subsets of n X n board without cycles, 2022.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
Formula
a(n) = ceiling(n^2/3 - n/6 + 4/3) - ceiling(n/2) for n >= 3.
From Stefano Spezia, Jun 02 2022: (Start)
G.f.: x^2*(1 + x^2 + 2*x^4 - x^5 + x^6 - x^7 + x^8)/((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n > 2. (End)
Comments