A354689 Smallest Euler pseudoprime to base n.
9, 341, 121, 341, 217, 185, 25, 9, 91, 9, 133, 65, 21, 15, 341, 15, 9, 25, 9, 21, 65, 21, 33, 25, 217, 9, 65, 9, 15, 49, 15, 25, 545, 21, 9, 35, 9, 39, 133, 39, 21, 451, 21, 9, 133, 9, 65, 49, 25, 21, 25, 51, 9, 55, 9, 33, 25, 57, 15, 341, 15, 9, 341, 9, 33, 65
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Euler Pseudoprime.
Programs
-
PARI
a(n) = my(m); forcomposite(k=3, oo, if(k%2 && ((m=Mod(n, k)^(k\2))==1 || m==k-1), return(k)));
-
Python
from sympy import isprime from itertools import count def a(n): return next(k for k in count(3, 2) if not isprime(k) and ((r:=pow(n, (k-1)//2, k)) == 1 or r == k-1)) print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Jun 03 2022
Formula
a(n) = 9 for n == 1 or 8 (mod 9).
Comments