cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354703 T(w,h) = w*h - A354702(w,h) is a lower bound on the gain in the number of not covered grid points from an optimally positioned and rotated cover versus a just translated cover, where T(w,h) and A354702 are triangles read by rows.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 3, 3, 4, 2, 3, 2, 3, 4, 2, 4, 3, 4, 4, 4, 3, 5, 3, 6, 4, 6, 9, 3, 5, 4, 5, 4, 4, 7, 7, 3, 6, 3, 6, 4, 6, 9, 6, 9, 3, 6, 4, 5, 4, 5, 7, 6, 6, 4, 4, 7, 5, 7, 5, 6, 10, 7, 9, 5, 9, 4, 8, 5, 8, 5, 8, 12, 8, 12, 8, 12, 16, 4, 8, 5, 7, 4, 6, 10, 6, 9, 4, 8, 12, 7
Offset: 1

Views

Author

Hugo Pfoertner, Jun 15 2022

Keywords

Examples

			The triangle begins:
    \ h 1  2  3  4  5  6   7  8   9 10  11  12 13
   w \ ------------------------------------------
   1 |  1; |  |  |  |  |   |  |   |  |   |   |  |
   2 |  1, 2; |  |  |  |   |  |   |  |   |   |  |
   3 |  1, 2, 2; |  |  |   |  |   |  |   |   |  |
   4 |  2, 3, 3, 4; |  |   |  |   |  |   |   |  |
   5 |  2, 3, 2, 3, 4; |   |  |   |  |   |   |  |
   6 |  2, 4, 3, 4, 4, 4;  |  |   |  |   |   |  |
   7 |  3, 5, 3, 6, 4, 6,  9; |   |  |   |   |  |
   8 |  3, 5, 4, 5, 4, 4,  7, 7;  |  |   |   |  |
   9 |  3, 6, 3, 6, 4, 6,  9, 6,  9; |   |   |  |
  10 |  3, 6, 4, 5, 4, 5,  7, 6,  6, 4;  |   |  |
  11 |  4, 7, 5, 7, 5, 6, 10, 7,  9, 5,  9;  |  |
  12 |  4, 8, 5, 8, 5, 8, 12, 8, 12, 8, 12, 16; |
  13 |  4, 8, 5, 7, 4, 6, 10, 6,  9, 4,  8, 12, 7
.
T(4,3) = 3, because the optimally positioned and rotated 4 X 3 rectangle
covers A354702(4,3) = 9 grid points, whereas a translated, but unrotated 4 X 3 rectangle covers 4*3 = 12 grid points. 4*3 - 9 = 3.
  + . . . . + . . . . + . . . . + . . . . + . . . . + . . . . +
  .         .         .         .         .         .         .
  .         .         .         .         .         .         .
  .         .         .         .       O .         .         .
  .         .         .         .    ~   \.         .         .
  + . . . . + . . . . + . . . . o . . . . \ . . . . + . . . . +
  .         .         .         .         .\        .         .
  .         .         .    ~    .         . o       .         .
  .         .         o         .         .  \      .         .
  .         .     ~   .         .         .   \     .         .
  + . . . . + o . . . 1 . . . . 2 . . . . 3 . .\. . + . . . . +
  .     ~   .         .         .         .     \   .         .
  . O       .         .         .         .      o  .         .
  .  \      .         .         .         .       \ .         .
  .   \     .         .         .         .        \.         .
  + . .\. . 4 . . . . 5 . . . . 6 . . . . 7 . . . . \ . . . . +
  .     o   .         .         .         .         .\        .
  .      \  .         .         .         .         . O       .
  .       \ .         .         .         .      ~  .         .
  .        \.         .         .         .  o      .         .
  + . . . . \ . . . . 8 . . . . 9 . . . . + . . . . + . . . . +
  .         .o        .         .       ~ .         .         .
  .         . \       .         .   o     .         .         .
  .         .  \      .       ~ .         .         .         .
  .         .   \     .   o     .         .         .         .
  + . . . . + . .\. . ~ . . . . + . . . . + . . . . + . . . . +
  .         .     O   .         .         .         .         .
  .         .         .         .         .         .
  .     O---------o---------o---------o---------O   .
  .     |   .         .         .         .     |   .
  + . . | . 1 . . . . 2 . . . . 3 . . . . 4 . . | . +
  .     |   .         .         .         .     |   .
  .     |   .         .         .         .     |   .
  .     o   .         .         .         .     o   .
  .     |   .         .         .         .     |   .
  + . . | . 5 . . . . 6 . . . . 7 . . . . 8 . . | . +
  .     |   .         .         .         .     |   .
  .     |   .         .         .         .     |   .
  .     o   .         .         .         .     o   .
  .     |   .         .         .         .     |   .
  + . . | . 9 . . . .10 . . . .11 . . . .12 . . | . +
  .     |   .         .         .         .     |   .
  .     |   .         .         .         .     |   .
  .     O---------o---------o---------o---------O   .
  .         .         .         .         .         .
  + . . . . + . . . . + . . . . + . . . . + . . . . +
		

Crossrefs

Cf. A354702, A354492 (diagonal).
Cf. A354704, A354705 (similar, but for maximizing the number of covered points).