cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A272872 Numbers k such that k+1 is divisible by number of divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 35, 37, 39, 41, 43, 47, 51, 53, 55, 59, 61, 67, 71, 73, 79, 83, 87, 89, 91, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 123, 127, 131, 135, 137, 139, 143, 149, 151, 155, 157, 159, 163, 167
Offset: 1

Views

Author

Altug Alkan, May 11 2016

Keywords

Comments

Inspired by A272353.
All odd primes are obvious members.
Numbers k such that k == -1 (mod A000005(k)). Nonprime terms are listed in A354714. - Max Alekseyev, Jun 04 2022
63 is the least number that is not in this sequence but is a member of A187929.

Examples

			15 is a term because A000005(15) = 4 divides 15+1 = 16.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@167, Mod[#+1, DivisorSigma[0, #]] == 0 &] (* Giovanni Resta, May 21 2016 *)
  • PARI
    lista(nn) = {for(n=1, nn, if((n+1) % numdiv(n) == 0, print1(n, ", ")));}

A354711 Numbers k such that the number of divisors of k divides k-1.

Original entry on oeis.org

1, 3, 4, 5, 7, 11, 13, 16, 17, 19, 21, 23, 25, 29, 31, 33, 37, 41, 43, 47, 49, 53, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 89, 93, 97, 100, 101, 103, 105, 107, 109, 113, 121, 125, 127, 129, 131, 133, 137, 139, 141, 145, 149, 151, 157, 161, 163, 167, 169, 173, 175, 177, 179, 181
Offset: 1

Views

Author

Max Alekseyev, Jun 03 2022

Keywords

Comments

Numbers k such that k == 1 (mod A000005(k)).
Every odd prime is a term. Nonprime terms are listed in A354712.

Crossrefs

Programs

  • Mathematica
    Select[Range[200], Divisible[# - 1, DivisorSigma[0, #]] &] (* Amiram Eldar, Jun 03 2022 *)

A354715 Numbers k such that the number of divisors of k divides k-2.

Original entry on oeis.org

1, 2, 6, 10, 14, 20, 22, 26, 32, 34, 38, 42, 44, 46, 50, 58, 62, 66, 68, 74, 82, 86, 92, 94, 98, 106, 112, 114, 116, 118, 122, 130, 134, 138, 142, 146, 154, 158, 162, 164, 166, 170, 178, 186, 188, 194, 202, 206, 210, 212, 214, 218, 226, 236, 242, 250, 254, 258, 262, 266, 272, 274, 278, 282
Offset: 1

Views

Author

Max Alekseyev, Jun 03 2022

Keywords

Comments

Numbers k such that k == 2 (mod A000005(k)).
Odd terms are squares. Next odd term after 1 is 5^16 * 29^6 = 90762835845947265625 (cf. A354716).
The smallest even square is 2^16 * 5^6 = 1024000000. - Jianing Song, Jun 04 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Divisible[# - 2, DivisorSigma[0, #]] &] (* Amiram Eldar, Jun 03 2022 *)
  • PARI
    isA354715(k) = (Mod(k,numdiv(k)) == 2) \\ Jianing Song, Jun 04 2022
    
  • Python
    from sympy import divisor_count
    def ok(n): return n > 0 and (n-2)%divisor_count(n) == 0
    print([k for k in range(300) if ok(k)]) # Michael S. Branicky, Jun 04 2022

A354716 Odd numbers k such that the number of divisors of k^2 divides k^2-2.

Original entry on oeis.org

1, 9526953125, 151959765625, 334912109375, 356512890625, 478532421875, 878160546875, 2122945380125, 3078358984375, 4941147265625, 8302317578125, 9788873160125, 11750090234375, 18994970703125, 21265601171875, 87362712109375
Offset: 1

Views

Author

Max Alekseyev, Jun 03 2022

Keywords

Comments

Numbers k^2 are the odd terms of A354715.

Crossrefs

A354714 Nonprime numbers k such that the number of divisors of k divides k+1.

Original entry on oeis.org

1, 15, 27, 35, 39, 51, 55, 87, 91, 95, 111, 115, 119, 123, 135, 143, 155, 159, 183, 187, 203, 215, 219, 231, 235, 245, 247, 255, 259, 267, 275, 287, 291, 295, 299, 303, 319, 323, 327, 335, 339, 343, 351, 355, 371, 375, 391, 395, 399, 403, 407, 411, 415, 425, 427, 447, 451, 455, 471, 511, 515
Offset: 1

Views

Author

Max Alekseyev, Jun 03 2022

Keywords

Comments

Nonprime numbers k such that k == -1 (mod A000005(k)).

Crossrefs

Nonprime terms of A272872.

Programs

  • Mathematica
    Select[Range[500], ! PrimeQ[#] && Divisible[# + 1, DivisorSigma[0, #]] &] (* Amiram Eldar, Jun 03 2022 *)

A354079 Numbers k such that the number of divisors of k^2 divides k^2-2.

Original entry on oeis.org

1, 32000, 6243584, 14047232, 99588352, 233644288, 313611008, 575511296, 796706816, 2017433344, 2303721472, 2337108224, 3238230272, 3673320192, 5441006848, 7700539136, 7925540864, 9526953125, 13936624384, 16755411712, 19238770688, 34763966464, 52577024000, 57254027008, 60130588928, 67423928576, 87057508352
Offset: 1

Views

Author

Max Alekseyev, Jun 05 2022

Keywords

Crossrefs

Numbers k such that k^2 is a term of A354715.
The odd terms form A354716.
Showing 1-6 of 6 results.