A354713 Number of solutions (n, D) for Pell equation n^2 - D*y^2 = 1 with fixed n.
1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 1, 2, 1, 3, 1, 6, 1, 4, 1, 2, 1, 3, 2, 3, 4, 2, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 3, 1, 3, 1, 2, 2, 2, 2, 3, 2, 6, 2, 4, 1, 4, 1, 6, 1, 3, 1, 2, 1, 2, 2, 4, 2, 4, 1, 2, 1, 2, 1, 6, 1, 6, 2, 2, 2, 2, 1, 3, 3, 3, 3, 2, 1, 2
Offset: 2
Keywords
Examples
a(17) = 6 because there are 6 possible solutions to 17^2 - D*y^2 = 1: 17^2 - 2*12^2 = 1, 17^2 - 8*6^2 = 1, 17^2 - 18*4^2 = 1, 17^2 - 32*3^2 = 1, 17^2 - 72*2^2 = 1 and 17^2 - 288*1^2 = 1. D = 18 is the smallest of the 6 D values, where the (17,y) pair is minimal and hence A033314(17) = 18.
Links
- Eric Weisstein's World of Mathematics, Pell Equation.
Programs
-
Mathematica
squarefreepart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n]); a[n_] := Divisors[Sqrt[(n^2 - 1)/squarefreepart[n^2 - 1]]] // Length; Table[a[n], {n, 2, 85}]
-
PARI
f(n) = sqrtint(n/core(n)) \\ A000188 a(n) = numdiv(f(n^2-1)); \\ Michel Marcus, Jun 05 2022
Comments