cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354713 Number of solutions (n, D) for Pell equation n^2 - D*y^2 = 1 with fixed n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 1, 2, 1, 3, 1, 6, 1, 4, 1, 2, 1, 3, 2, 3, 4, 2, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 3, 1, 3, 1, 2, 2, 2, 2, 3, 2, 6, 2, 4, 1, 4, 1, 6, 1, 3, 1, 2, 1, 2, 2, 4, 2, 4, 1, 2, 1, 2, 1, 6, 1, 6, 2, 2, 2, 2, 1, 3, 3, 3, 3, 2, 1, 2
Offset: 2

Views

Author

Herbert Kociemba, Jun 04 2022

Keywords

Comments

a(n) can be computed as the number of divisors of the square root of the largest square dividing n^2 - 1.
A067874 gives n with a(n) = 1.

Examples

			a(17) = 6 because there are 6 possible solutions to 17^2 - D*y^2 = 1: 17^2 - 2*12^2 = 1, 17^2 - 8*6^2 = 1, 17^2 - 18*4^2 = 1, 17^2 - 32*3^2 = 1, 17^2 - 72*2^2 = 1 and 17^2 - 288*1^2 = 1. D = 18 is the smallest of the 6 D values, where the (17,y) pair is minimal and hence A033314(17) = 18.
		

Crossrefs

Programs

  • Mathematica
    squarefreepart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n]);
    a[n_] :=  Divisors[Sqrt[(n^2 - 1)/squarefreepart[n^2 - 1]]] // Length; Table[a[n], {n, 2, 85}]
  • PARI
    f(n) = sqrtint(n/core(n)) \\ A000188
    a(n) = numdiv(f(n^2-1)); \\ Michel Marcus, Jun 05 2022

Formula

a(n) = A000005(A000188(n^2-1)).