A354722 Composite numbers whose divisors have distinct binary weights (A000120).
25, 39, 55, 57, 69, 87, 95, 111, 115, 119, 121, 123, 125, 141, 145, 159, 169, 177, 183, 185, 187, 201, 203, 205, 213, 215, 219, 221, 235, 237, 249, 253, 265, 289, 291, 299, 301, 303, 305, 319, 321, 323, 329, 335, 339, 355, 361, 365, 371, 377, 391, 393, 411, 413
Offset: 1
Examples
25 is a term since its divisors, 1, 5 and 25, have binary weights 1, 2 and 3, respectively. 55 is a term since its divisors, 1, 5, 11 and 55, have binary weights 1, 2, 3 and 5, respectively.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
bw[n_] := DigitCount[n, 2, 1]; q[n_] := CompositeQ[n] && UnsameQ @@ (bw /@ Divisors[n]); Select[Range[1, 400, 2], q]
-
PARI
isok(c) = {if ((c>1) && !isprime(c), my(d=divisors(c)); #Set(apply(hammingweight, d)) == #d;);} \\ Michel Marcus, Jun 04 2022
-
Python
from sympy import divisors def binwt(n): return bin(n).count("1") def ok(n): binwts, divs = set(), 0 for d in divisors(n, generator=True): b = binwt(d) if b in binwts: return False binwts.add(b) divs += 1 return divs > 2 print([k for k in range(415) if ok(k)]) # Michael S. Branicky, Jun 04 2022
Comments