cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354745 Non-repdigit numbers k such that every permutation of the digits of k has the same number of divisors.

Original entry on oeis.org

13, 15, 17, 24, 26, 31, 37, 39, 42, 51, 58, 62, 71, 73, 79, 85, 93, 97, 113, 117, 131, 155, 171, 177, 178, 187, 199, 226, 262, 288, 311, 337, 339, 355, 373, 393, 515, 535, 551, 553, 558, 585, 622, 711, 717, 718, 733, 771, 781, 817, 828, 855, 871, 882, 899, 919, 933, 989, 991, 998
Offset: 1

Views

Author

Metin Sariyar, Jun 05 2022

Keywords

Comments

After a(93) = 84444, no further terms < 10^18. - Michael S. Branicky, Jun 08 2022

Examples

			871 is a term because d(871) = d(817) = d(178) = d(187) = d(718) = d(781) = 4, where d(n) is the number of divisors of n.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],CountDistinct[DivisorSigma[0,FromDigits /@ Permutations[IntegerDigits[#]]]]==1&&CountDistinct[IntegerDigits[#]]>1&]
  • Python
    from sympy import divisor_count
    from itertools import permutations
    def ok(n):
        s, d = str(n), divisor_count(n)
        if len(set(s)) == 1: return False
        return all(d==divisor_count(int("".join(p))) for p in permutations(s))
    print([k for k in range(5500) if ok(k)]) # Michael S. Branicky, Jun 05 2022