A354745 Non-repdigit numbers k such that every permutation of the digits of k has the same number of divisors.
13, 15, 17, 24, 26, 31, 37, 39, 42, 51, 58, 62, 71, 73, 79, 85, 93, 97, 113, 117, 131, 155, 171, 177, 178, 187, 199, 226, 262, 288, 311, 337, 339, 355, 373, 393, 515, 535, 551, 553, 558, 585, 622, 711, 717, 718, 733, 771, 781, 817, 828, 855, 871, 882, 899, 919, 933, 989, 991, 998
Offset: 1
Examples
871 is a term because d(871) = d(817) = d(178) = d(187) = d(718) = d(781) = 4, where d(n) is the number of divisors of n.
Programs
-
Mathematica
Select[Range[10000],CountDistinct[DivisorSigma[0,FromDigits /@ Permutations[IntegerDigits[#]]]]==1&&CountDistinct[IntegerDigits[#]]>1&]
-
Python
from sympy import divisor_count from itertools import permutations def ok(n): s, d = str(n), divisor_count(n) if len(set(s)) == 1: return False return all(d==divisor_count(int("".join(p))) for p in permutations(s)) print([k for k in range(5500) if ok(k)]) # Michael S. Branicky, Jun 05 2022
Comments