A066523 Crowded numbers: for any k in the sequence, d(k)/k is larger than d(m)/m for all m > k.
2, 4, 6, 12, 24, 30, 36, 48, 60, 72, 84, 120, 144, 180, 240, 252, 360, 420, 480, 504, 540, 720, 840, 900, 1008, 1080, 1260, 1440, 1680, 1800, 2520, 2640, 2880, 3360, 3780, 3960, 5040, 5280, 5400, 5460, 5544, 6300, 7560, 7920, 10080, 10920, 12600
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..300 (first 129 terms from Roy Maulbogat)
Programs
-
Maple
Tau := n -> NumberTheory:-tau(n): t := (n, k) -> k*Tau(n) < n*Tau(k): isCrowded := proc(k) local n; if k::odd then return false fi; andmap(j -> t(j, k), [seq(k+2..2*k,2)]) end: aList := n -> select(isCrowded, [seq(1..n)]): aList(1100); # Peter Luschny, Jan 24 2025
-
Mathematica
crowded[n_] := Module[{}, stop=(2/(dovern=DivisorSigma[0, n]/n))^2; For[m=n+1, m
=dovern, Return[False]]]; True]; Select[Range[1, 13000], crowded]
Extensions
Edited by Dean Hickerson, Jan 07 2002
Comments