cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354795 Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
Offset: 0

Views

Author

Peter Luschny, Jun 09 2022

Keywords

Comments

The triangle is the matrix inverse of the Bell transform of n^n (A354794).
The numbers (-1)^(n-k)*T(n, k) are known as the Lehmer-Comtet numbers of 1st kind (A008296).
The function cfact is the 'complementary factorial' (name is ad hoc) and written \hat{!} in TeX mathmode. 1/(cfact(-n) * cfact(n)) = signum(-n) * n for n != 0. It is related to the Roman factorial (A159333). The Bell transform of the factorial are the Stirling cycle numbers (A132393).

Examples

			Triangle T(n, k) begins:
[0] [1]
[1] [0,     1]
[2] [0,    -1,    1]
[3] [0,    -1,   -3,   1]
[4] [0,    -2,   -1,  -6,   1]
[5] [0,    -6,    0,   5, -10,    1]
[6] [0,   -24,    4,  15,  25,  -15,    1]
[7] [0,  -120,   28,  49,  35,   70,  -21,   1]
[8] [0,  -720,  188, 196,  49,    0,  154, -28,   1]
[9] [0, -5040, 1368, 944,   0, -231, -252, 294, -36, 1]
		

References

  • Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.

Crossrefs

Cf. A354794 (matrix inverse), A176118 (row sums), A005727 (alternating row sums), A045406 (column 2), A347276 (column 3), A345651 (column 4), A298511 (central), A008296 (variant), A159333, A264428, A159075, A006963, A354796.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
    # Alternative:
    t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
    T := (n, k) -> (-1)^(n-k)*t(n, k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the e.g.f.:
    egf := (1 - x)^(t*(x - 1)):
    ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
    row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
    seq(print(row(n)), n = 0..9);
  • Mathematica
    cfact[n_] := If[n == 0, 1, -(n - 1)!];
    R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
    Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten

Formula

T(n, k) = n!*[t^k][x^n] (1 - x)^(t*(x - 1)).
T(n, k) = Sum_{j=k..n} (-1)^(n-k)*binomial(j, k)*k^(j-k)*Stirling1(n, j).
T(n, k) = Bell_{n, k}(a), where Bell_{n, k} is the partial Bell polynomial evaluated over the sequence a = {cfact(m) | m >= 0}, (see Mathematica).
T(n, k) = (-1)^(n-k)*t(n, k) where t(n, n) = 1 and t(n, k) = (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) for k > 0 and n > 0.
Let s(n) = (-1)^n*Sum_{k=1..n} (k-1)^(k-1)*T(n, k) for n >= 0, then s = A159075.
Sum_{k=1..n} (k + x)^(k-1)*T(n, k) = binomial(n + x - 1, n-1)*(n-1)! for n >= 1. Note that for x = k this is A354796(n, k) for 0 <= k <= n and implies in particular for x = n >= 1 the identity Sum_{k=1..n} (k + n)^(k - 1)*T(n, k) = Gamma(2*n)/n! = A006963(n+1).
E.g.f. of column k >= 0: ((1 - t) * log(1 - t))^k / ((-1)^k * k!). - Werner Schulte, Jun 14 2022