A354802 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-hypercube graph.
1, 1, 1, 2, 1, 4, 2, 1, 8, 16, 8, 2, 1, 16, 88, 208, 228, 128, 56, 16, 2, 1, 32, 416, 2880, 11760, 29856, 48960, 54304, 44240, 29920, 17952, 9088, 3672, 1120, 240, 32, 2, 1, 64, 1824, 30720, 342400, 2682432, 15328064, 65515840, 213464240, 538811200, 1070860384, 1708551424, 2245780976, 2517976640, 2509047680
Offset: 0
Examples
Triangle begins: n=0: 1, 1 n=1: 1, 2 n=2: 1, 4, 2 n=3: 1, 8, 16, 8, 2 n=4: 1, 16, 88, 208, 228, 128, 56, 16, 2 The 3-hypercube graph has independence polynomial 1 + 8*t + 16*t^2 + 8*t^3 + 2*t^4.
Links
- Christopher Flippen, Table of n, a(n) for n = 0..71
- M. Jenssen, W. Perkins and A. Potukuchi, Independent sets of a given size and structure in the hypercube, Combinatorics, Probability and Computing, 2022, 1-19; see also arXiv:2106.09709 [math.CO], 2021-2022.
- Eric Weisstein's World of Mathematics, Hypercube graph
- Eric Weisstein's World of Mathematics, Independence polynomial
Programs
-
Sage
from sage.graphs.independent_sets import IndependentSets def row(n): if n == 0: g = graphs.CompleteGraph(1) setCounts = [0, 0] else: g = graphs.CubeGraph(n) setCounts = [0] * (pow(2,n - 1) + 1) for Iset in IndependentSets(g): setCounts[len(Iset)] += 1 return setCounts # Christopher Flippen and Scott Taylor, Jun 06 2022
Comments