A354830 a(n) is the number of permutations p of [n] such that gcd(i, p(i)) > 1 for 2 <= i <= n.
1, 1, 1, 1, 2, 2, 8, 8, 30, 72, 408, 408, 4104, 4104, 29640, 208704, 1437312, 1437312, 22653504, 22653504, 318695040, 2686493376, 27628410816, 27628410816, 575372874240, 1775480841216, 21115550048256, 132879856582656, 2321256928702464, 2321256928702464, 83095013944442880
Offset: 0
Keywords
Links
- Carl Pomerance, Coprime permutations, arXiv:2203.03085 [math.NT], 2022. See TABLE 3.
Crossrefs
Cf. A320843.
Programs
-
PARI
a(n) = { my (v=select(x -> (!isprime(x)) || (2*x<=n), [2..n])); matpermanent(matrix(#v, #v, i,j, gcd(v[i],v[j])>1)) } \\ Rémy Sigrist, Jun 07 2022
-
Ruby
def search(a, num, n) if num == n + 1 @cnt += 1 else (1..n).each{|i| if a[i] == 0 if i == 1 || i.gcd(num) > 1 a[i] = num search(a, num + 1, n) a[i] = 0 end end } end end def A(n) a = [0] * (n + 1) @cnt = 0 search(a, 1, n) @cnt end def A354830(n) (0..n).map{|i| A(i)} end p A354830(15)
Formula
a(p) = a(p-1) for primes p.
Extensions
More terms from Rémy Sigrist, Jun 07 2022