cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354855 a(n) = floor(n*(2+sqrt(5))^n), equivalently, floor(n*phi^(3n)), where phi = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

0, 4, 35, 228, 1287, 6820, 34667, 171332, 829455, 3952836, 18604979, 86693156, 400623383, 1838490212, 8387044091, 38065809540, 171999313951, 774138335108, 3472202765123, 15525625108324, 69229056160039, 307921937307684, 1366491508589195, 6051666872017348
Offset: 0

Views

Author

Jiale Wang, Jun 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[n * GoldenRatio^(3*n)]; Array[a, 25, 0] (* Amiram Eldar, Jun 09 2022 *)

Formula

a(n) = floor((2+sqrt(5))^n*n).
a(n) = floor(n*phi^(3n)) where phi=(1+sqrt(5))/2 is the golden ratio.
a(n) = floor(n*F(3n-1)+n*phi*F(3n)), where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = n*L(3n) when n is odd and a(n) = n*L(3n)-1 when n is even (n>=2), where L(n) = A000032(n) is the n-th Lucas number.
G.f.: x*(4 + 3*x - 18*x^3 - 4*x^4 - x^5)/((1 - x)*(1 + x)*(1 - 4*x - x^2)^2). - Stefano Spezia, Jun 12 2022