cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354893 a(n) = n! * Sum_{d|n} d^(n - d) / (n/d)!.

Original entry on oeis.org

1, 3, 7, 73, 121, 12361, 5041, 5308801, 44452801, 5681370241, 39916801, 16800125569921, 6227020801, 35897693762810881, 2134168822456070401, 190139202281277849601, 355687428096001, 3563095308471181273190401, 121645100408832001
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^(n - #)/(n/#)! &]; Array[a, 19] (* Amiram Eldar, Jun 10 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^(n-d)/(n/d)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/k^k)))

Formula

E.g.f.: Sum_{k>0} (exp((k * x)^k) - 1)/k^k.
If p is prime, a(p) = 1 + p! = A038507(p).