cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354898 a(n) = n! * Sum_{d|n} d^(n - d) / (d! * (n/d)!).

Original entry on oeis.org

1, 2, 2, 26, 2, 2582, 2, 268802, 7348322, 51120722, 2, 299332756802, 2, 7157951760962, 18701679546950402, 613777679843328002, 2, 3250742570192384467202, 2, 29411516073133093829529602, 1146522800008167069616128002, 4017001663590220290585602, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2022

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; n! * add(d^(n-d)/(d! * (n/d)!), d = numtheory:-divisors(n)) end proc:
    map(f, [$1..30]); # Robert Israel, Jul 10 2023
  • Mathematica
    a[n_] := n! * DivisorSum[n, #^(n - #)/(#! * (n/#)!) &]; Array[a, 23] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^(n-d)/(d!*(n/d)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/(k^k*k!))))

Formula

E.g.f.: Sum_{k>0} (exp((k * x)^k) - 1)/(k^k * k!).
If p is prime, a(p) = 2.

A354899 a(n) = n! * Sum_{d|n} d^d / (d! * (n/d)!).

Original entry on oeis.org

1, 5, 28, 281, 3126, 48517, 823544, 16995617, 387692650, 10047310481, 285311670612, 8932562801857, 302875106592254, 11119129387084097, 437899615088648176, 18451106376806703617, 827240261886336764178, 39349894934527426209025
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^#/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^d/(d!*(n/d)!));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k^k*(exp(x^k)-1)/k!)))

Formula

E.g.f.: Sum_{k>0} k^k * (exp(x^k) - 1)/k!.
If p is prime, a(p) = 1 + p^p.
Showing 1-2 of 2 results.