A354902 a(n) = 2*n^2 - 6*n + 11 for n > 1 with a(0)=1 and a(1)=3.
1, 3, 7, 11, 19, 31, 47, 67, 91, 119, 151, 187, 227, 271, 319, 371, 427, 487, 551, 619, 691, 767, 847, 931, 1019, 1111, 1207, 1307, 1411, 1519, 1631, 1747, 1867, 1991, 2119, 2251, 2387, 2527, 2671, 2819, 2971, 3127, 3287, 3451, 3619, 3791, 3967, 4147, 4331, 4519, 4711, 4907
Offset: 0
Examples
The diagrams below illustrate the terms a(3)=11 and a(4)=19. R R / \ / \ / \ / \ / \ / \ o o / \ / \ / \ / \ o N N o / \ / \ / \ / \ N N N N o o / \ / \ / \ / \ / \ / \ o o o o / \ / \ / \ / \ o N N N N N o N / \ / \ N N N N
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Lecture Notes for Computer Science 2530, Height-balanced trees
- NIST, Root node
- NIST, Leaf node
- Wikipedia, Full binary tree
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
C
int a(int n){ return n>1 ? 2*(n*n) - 6*n + 11 : 2*n + 1; }
-
Mathematica
CoefficientList[Series[(1 + x^2 - 2 x^3 + 4 x^4)/(1 - x)^3, {x, 0, 51}], x] (* Michael De Vlieger, Jun 19 2022 *)
Formula
a(n) = 2*A027688(n-2) + 1, for n >= 2.
a(n) = 4*A022856(n+2) - 1, for n >= 1.
a(n) = a(n-1) + 4*(n-2) for n >= 3.
G.f.: (1 + x^2 - 2*x^3 + 4*x^4)/(1 - x)^3. - Stefano Spezia, Jun 12 2022
Sum_{n>=2} 1/a(n) = Pi*tanh(sqrt(13)*Pi/2)/(2*sqrt(13)). - Amiram Eldar, Jul 10 2022
Comments