A354905 First position of n in A354578, where A354578(k) is the number of integer compositions whose run-sums constitute the k-th composition in standard order (graded reverse-lexicographic, A066099).
3, 0, 2, 8, 32, 68, 130, 290, 274, 580, 520, 1298, 2080, 1096, 2082, 4168, 2178, 4164, 4386, 35137, 8328, 8786, 10274, 8772, 16712, 20562, 8712, 16658, 33320, 41554, 33288, 82210, 34856, 66628, 33312, 66642, 34850, 69704, 140306, 133448, 69714, 74308, 133154
Offset: 0
Keywords
Examples
The terms and their corresponding compositions begin: 3: (1,1) 0: () 2: (2) 8: (4) 32: (6) 68: (4,3) 130: (6,2) 290: (3,4,2) 274: (4,3,2) 580: (3,4,3) 520: (6,4) 1298: (2,4,3,2) The inverse run-sum compositions for n = 2, 8, 32, 68, 130, 290: (2) (4) (6) (43) (62) (342) (11) (22) (33) (223) (332) (3411) (1111) (222) (4111) (611) (11142) (111111) (11113) (3311) (32211) (22111) (22211) (111411) (1111112) (311112) (1112211)
Crossrefs
Programs
-
Mathematica
nn=1000; stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; antirunQ[y_]:=Length[Split[y]]==Length[y]; q=Table[Length[Select[Tuples[Divisors/@stc[n]],antirunQ]],{n,0,nn}]; w=Last[Select[Table[Take[q+1,i],{i,nn}],Union[#]==Range[Max@@#]&]-1]; Table[Position[w,k][[1,1]]-1,{k,0,Max@@w}]
Comments