A354913 Nonzero coefficient with smallest index in polynomial p_n(x), where p_n(x) = Product_{i={-1,1}} p_{n-1}(x + i*sqrt(prime(n))), starting with p_0(x) = x.
1, -2, 1, 576, 46225, 2000989041197056, 198828783273803025550632280753863681, 6104549033356152351183622743336946156997116945571290671544232012635281247174656
Offset: 0
Keywords
Examples
The first polynomials p_0(x) ... p_3(x) are: x, x^2 -2, x^4 -10*x^2 +1, x^8 -40*x^6 +352*x^4 -960*x^2 +576, so the sequence starts 1, -2, 1, 576. p_0(x) has 2^0 = 1 root: 0 (empty sum). p_1(x) has 2^1 = 2 roots: -sqrt(2), sqrt(2); their product gives a(1) = -2. p_2(x) has 2^2 = 4 roots: -sqrt(2)-sqrt(3), -sqrt(2)+sqrt(3), sqrt(2)-sqrt(3), sqrt(2)+sqrt(3); their product gives a(2) = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10.
- Lucas A. Brown, Python program.
- Alois P. Heinz, Scaled plot of polynomials p(0) ... p(4).
- Eric Weisstein's World of Mathematics, Swinnerton-Dyer Polynomial.
- Wikipedia, Swinnerton-Dyer polynomial.
Crossrefs
Programs
-
Maple
p:= proc(n) option remember; expand(`if`(n=0, x, mul( subs(x=x+i*sqrt(ithprime(n)), p(n-1)), i=[1, -1]))) end: a:= n-> coeff(p(n), x, 1-signum(n)): seq(a(n), n=0..8);
-
Mathematica
p[n_] := p[n] = Expand[If[n == 0, x, Product[ p[n-1] /. x -> x+i*Sqrt[Prime[n]], {i, {1, -1}}]]]; a[n_] := Coefficient[p[n], x, 1-Sign[n]]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)
-
Python
# See LINKS
Formula
a(n) = [x^A000007(n)] p_n(x), with p_n(x) = Product_{v={-1,1}^n} (x + Sum_{i=1..n} v[i]*sqrt(prime(i))).
Comments