cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A354950 The number of squarefree numbers whose largest prime divisor is prime(n) and that are averages of twin prime pairs.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 7, 4, 9, 20, 31, 57, 88, 139, 282, 421, 806, 1397, 2572, 4440, 7863, 14580, 26211, 47727, 86929, 159972, 292650, 542477, 1000087, 1850347, 3432551, 6381199
Offset: 1

Views

Author

Amiram Eldar, Jun 13 2022

Keywords

Examples

			n  prime(n)  a(n)  terms k of A070195 with A006530(k) = prime(n)
-  --------  ----  ---------------------------------------------
1   2        0     -
2   3        1     6
3   5        1     30
4   7        1     42
5  11        2     462, 2310
6  13        2     858, 2730
7  17        3     102, 9282, 102102
8  19        7     570, 1482, 6270, 21318, 43890, 51870, 1939938
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[Prime[n] * Divisors[Product[Prime[i], {i, 1, n - 1}]], _?(PrimeQ[# - 1] && PrimeQ[# + 1] &)]; Array[a, 10]
  • Python
    from math import prod
    from itertools import combinations
    from sympy import primerange, prime, isprime
    def A354950(n):
        plist = list(primerange(2,p:=prime(n)))
        return sum(1 for l in range(1,n) for d in combinations(plist,l) if isprime((q:= prod(d)*p)-1) and isprime(q+1)) # Chai Wah Wu, Jun 14 2022

Formula

Conjecture: Limit_{n->oo} log(a(n))/(n*log(n)) = c ~ 0.13... .
Showing 1-1 of 1 results.