A354968 Triangle read by rows: T(n, k) = n*k*(n+k)*(n-k)/6.
1, 4, 5, 10, 16, 14, 20, 35, 40, 30, 35, 64, 81, 80, 55, 56, 105, 140, 154, 140, 91, 84, 160, 220, 256, 260, 224, 140, 120, 231, 324, 390, 420, 405, 336, 204, 165, 320, 455, 560, 625, 640, 595, 480, 285, 220, 429, 616, 770, 880, 935, 924, 836, 660, 385, 286, 560, 810, 1024
Offset: 2
Examples
Triangle begins: n/k 1 2 3 4 5 6 7 2 1; 3 4, 5; 4 10, 16, 14; 5 20, 35, 40, 30; 6 35, 64, 81, 80, 55; 7 56, 105, 140, 154, 140, 91; 8 84, 160, 220, 256, 260, 224, 140; ... For n = 3, k = 2, a = 5, b = 12, c = 13. T(3, 2) = sqrt((13^4 - 5^4 - 12^4)/288) = 5.
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Page 72.
Links
- M. F. Hasler, Table of n, a(n) for n = 2..1000, May 08 2025
- Wikipedia, Pythagorean Triple.
- Index entries related to Pythagorean Triples.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=n*k(n^2-k^2)/6; Table[T[n,k],{n,2,11},{k,n-1}]//Flatten (* Stefano Spezia, Jul 11 2025 *)
-
PARI
apply( {A354968(n, k=0)=k|| k=n-1-(1-n=ceil(sqrt(8*n-7)/2+.5))*(2-n)\2; k*(n-k)*n*(n+k)\6}, [2..66]) \\ M. F. Hasler, May 08 2025
Formula
G.f.: x^2*y*(1 + x*y - 4*x^2*y + x^3*y + x^4*y^2)/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Jul 11 2025
Comments