A354974 Distance LQnR(n) (A334819) from n.
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1
Offset: 3
Examples
The nonsquares modulo 8 are 2, 3, 5, 6, and 7, so the distance of the largest quadratic nonresidue from 8 is a(8) = 1. The quadratic nonresidues modulo 17 are 3, 5, 6, 7, 10, 11, 12, and 14, so a(17) = 17 - 14 = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 3..10000
Programs
-
Mathematica
a[n_] := n - Max @ Complement[Range[n - 1], Mod[Range[n/2]^2, n]]; Array[a, 100, 3] (* Amiram Eldar, Jun 15 2022 *)
-
PARI
a(n) = forstep(r = n - 1, 1, -1, if(!issquare(Mod(r, n)), return(n-r))) \\ Thomas Scheuerle, Jun 15 2022
Comments