cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354991 Number of divisors d of n for which A344005(d) = A344005(n), where A344005(n) is the smallest positive integer m such that n divides m*(m+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 17 2022

Keywords

Crossrefs

Cf. A000005, A344005, A354990, A354992, A354994 (positions of 1's).
Cf. also A344590, A345935.

Programs

  • Mathematica
    s[n_] := Module[{m = 1}, While[! Divisible[m*(m + 1), n], m++]; m]; a[n_] := Module[{sn = s[n]}, 1 + DivisorSum[n, 1 &, # < n && s[#] == sn &]]; Array[a, 100] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005
    A354991(n) = { my(x=A344005(n)); sumdiv(n, d, A344005(d)==x); };

Formula

a(n) = Sum_{d|n} [A344005(d) = A344005(n)], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A354992(n).
a(n) <= A354990(n).