cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A355006 Triangle read by rows. T(n, k) = n^(n - k) * |Stirling1(n, k)|.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 18, 9, 1, 0, 384, 176, 24, 1, 0, 15000, 6250, 875, 50, 1, 0, 933120, 355104, 48600, 3060, 90, 1, 0, 84707280, 29647548, 3899224, 252105, 8575, 147, 1, 0, 10569646080, 3425697792, 430309376, 27725824, 1003520, 20608, 224, 1
Offset: 0

Views

Author

Peter Luschny, Jun 17 2022

Keywords

Examples

			Table T(n, k) begins:
[0] 1;
[1] 0,           1;
[2] 0,           2,          1;
[3] 0,          18,          9,         1;
[4] 0,         384,        176,        24,        1;
[5] 0,       15000,       6250,       875,       50,       1;
[6] 0,      933120,     355104,     48600,     3060,      90,     1;
[7] 0,    84707280,   29647548,   3899224,   252105,    8575,   147,   1;
[8] 0, 10569646080, 3425697792, 430309376, 27725824, 1003520, 20608, 224, 1;
		

Crossrefs

A152684 (column 1), A006002 (subdiagonal), A092985 (row sums), A355007.

Programs

  • Maple
    seq(seq(n^(n - k)*abs(Stirling1(n, k)), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := If[n == k == 0, 1, n^(n - k) * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 17 2022 *)
Showing 1-1 of 1 results.