A355011 Array read by ascending antidiagonals: T(n, k) is the number of self-conjugate n-core partitions with k corners.
1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 3, 4, 5, 1, 1, 3, 9, 5, 7, 1, 1, 4, 9, 15, 7, 8, 1, 1, 4, 16, 15, 27, 8, 10, 1, 1, 5, 16, 34, 27, 37, 10, 11, 1, 1, 5, 25, 34, 76, 37, 55, 11, 13, 1, 1, 6, 25, 65, 76, 124, 55, 69, 13, 14, 1, 1, 6, 36, 65, 175, 124, 216, 69, 93, 14, 16, 1, 1
Offset: 2
Examples
The array begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 4, 5, 7, 8, 10, 11, 13, ... 2, 4, 5, 7, 8, 10, 11, 13, ... 3, 9, 15, 27, 37, 55, 69, 93, ... 3, 9, 15, 27, 37, 55, 69, 93, ... 4, 16, 34, 76, 124, 216, 309, 471, ... 4, 16, 34, 76, 124, 216, 309, 471, ... 5, 25, 65, 175, 335, 675, 1095, 1875, ... 5, 25, 65, 175, 335, 675, 1095, 1875, ... ...
Links
- Hyunsoo Cho, JiSun Huh, Hayan Nam, and Jaebum Sohn, Combinatorics on bounded free Motzkin paths and its applications, arXiv:2205.15554 [math.CO], 2022.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=Sum[Binomial[Floor[(k-1)/2],Floor[(i-1)/2]]Binomial[Floor[k/2],Floor[i/2]]Binomial[Floor[n/2]+k-i,k],{i,Min[k,Floor[n/2]]}]; Flatten[Table[T[n-k+1,k],{n,2,13},{k,1,n-1}]]
Formula
T(n, k) = Sum_{i=1..min(k,floor(n/2))} binomial(floor((k-1)/2), floor((i-1)/2))*binomial(floor(k/2), floor(i/2))*binomial(floor(n/2)+k-i, k). (See proposition 3.8 in Cho et al.).
T(4, n) = T(5, n) = A001651(n+1).
Comments