cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355019 Partial sums of L(1) - F(1) + L(2) - F(2) + L(3) - F(3) + ..., where L = A000032 and F = A000045.

Original entry on oeis.org

1, 0, 3, 2, 6, 4, 11, 8, 19, 14, 32, 24, 53, 40, 87, 66, 142, 108, 231, 176, 375, 286, 608, 464, 985, 752, 1595, 1218, 2582, 1972, 4179, 3192, 6763, 5166, 10944, 8360, 17709, 13528, 28655, 21890, 46366, 35420, 75023, 57312, 121391, 92734, 196416, 150048
Offset: 0

Views

Author

Clark Kimberling, Jun 16 2022

Keywords

Comments

The closely related partial sums of F(1) - L(1) + F(2) - L(2) + F(3) - L(3) + ... are given by A355018.

Examples

			a(0) = 1
a(1) = 1 - 1 = 0
a(2) = 1 - 1 + 3 = 3
a(3) = 1 - 1 + 3  - 1 = 2.
		

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [(((n+1) mod 2)*F(Floor(n/2)+4) + 2*(n mod 2)*F(Floor((n+3)/2))) - 2: n in [0..60]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    f[n_] := Fibonacci[n]; g[n_] := LucasL[n];
    f1[n_] := If[OddQ[n], 2 - 2 f[(n + 3)/2], 2 - f[(n + 2)/2]]
    f2 = Table[f1[n], {n, 0, 20}]  (* A355018 *)
    g1[n_] := If[OddQ[n], -2 + 2 f[(n + 3)/2], -2 + f[(n + 8)/2]]
    g2 = Table[g1[n], {n, 0, 20}]  (* this sequence *)
    LinearRecurrence[{1,1,-1,1,-1}, {1,0,3,2,6}, 61] (* G. C. Greubel, Mar 17 2024 *)
  • SageMath
    f=fibonacci; [(((n+1)%2)*f((n//2)+4) +2*(n%2)*f((n+3)//2)) -2 for n in range(61)] # G. C. Greubel, Mar 17 2024

Formula

a(n) = -2 + 2 F((n+3)/2) if n is odd, a(n) = - 2 + F((n+8)/2) if n is even, where F = A000045 (Fibonacci numbers).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) for n >= 5.
G.f.: (1 - x + 2*x^2)/((1 - x)*(1 - x^2 - x^4)).
From G. C. Greubel, Mar 17 2024: (Start)
a(n) = (1/2)*Sum_{j=0..n} ( (1+(-1)^j)*Lucas(floor(j/2) +1) - (1-(-1)^j) *Fibonacci(floor((j+1)/2)) ).
a(n) = (1/2)*( (1+(-1)^n)*Fibonacci(floor(n/2) +4) + 2*(1-(-1)^n)* Fibonacci(floor((n+3)/2)) ) - 2. (End)