A355039 Carmichael numbers whose number of prime factors is prime.
561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 46657, 52633, 115921, 162401, 252601, 294409, 314821, 334153, 399001, 410041, 488881, 512461, 530881, 825265, 1024651, 1050985, 1152271, 1193221, 1461241, 1615681, 1857241, 1909001, 2508013, 3057601, 3581761, 3828001
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10280 (terms below 10^13)
- D. R. Heath-Brown, Almost-primes in arithmetic progressions and short intervals, Math. Proc. Cambridge Philos. Soc., Vol. 83, No. 1 (1978), pp. 357-375.
- Thomas Wright, Carmichael Numbers with Prime Numbers of Prime Factors, arXiv:2206.07254 [math.NT], 2022-2024.
Crossrefs
Programs
-
Mathematica
Select[Range[1, 10^6, 2], CompositeQ[#] && PrimeQ[PrimeNu[#]] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 16 2022 *)
-
PARI
pKorselt(m) = my(f=factor(m)); for(i=1, #f[, 1], if(f[i, 2]>1||(m-1)%(f[i, 1]-1), return(0))); #f~; isok(m) = (m%2) && !isprime(m) && isprime(pKorselt(m)) && (m>1);
-
Python
from itertools import islice from sympy import factorint, isprime, nextprime def A355039_gen(): # generator of terms p, q = 3, 5 while True: yield from (n for n in range(p+2,q,2) if max((f:=factorint(n)).values()) == 1 and not any((n-1) % (p-1) for p in f) and isprime(len(f))) p, q = q, nextprime(q) A355039_list = list(islice(A355039_gen(),20)) # Chai Wah Wu, Jun 16 2022
Comments