cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355043 Expansion of the continued fraction 1 / (1-q-q^2 / (1-q-q^2-q^3 / (1-q-q^2-q^3-q^4 / (...)))).

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 50, 121, 296, 730, 1811, 4513, 11285, 28294, 71088, 178904, 450840, 1137345, 2871720, 7256093, 18345060, 46403039, 117421762, 297232446, 752601692, 1906056161, 4828267801, 12232594912, 30996034963, 78549710061, 199079279640, 504596195477, 1279065489044
Offset: 0

Views

Author

Joerg Arndt, Jun 16 2022

Keywords

Comments

Starts similar to A091964, terms differ after 730.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x - x^2/(1 - x - x^2 + ContinuedFractionK[-x^k, 1 - x*(1 - x^k)/(1 - x), {k, 3, nmax}])), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2022 *)
  • PARI
    N=44; q='q+O('q^N);
    f(n) = 1 - sum(k=1,n-1,q^k);
    s=1; forstep(j=N, 2, -1, s = q^j/s; s = f(j) - s ); s = 1/s;
    Vec(s)

Formula

a(n) ~ c * d^n, where d = 2.5358790673564851880281667369326354455... and c = 0.14917782209027525483339419811881753... - Vaclav Kotesovec, Jun 16 2022