A355049 Number of chiral pairs of orthoplex n-ominoes with cell centers determining n-3 space.
8, 76, 440, 2019, 8147, 30367, 107061, 361655, 1181761, 3762817, 11733393, 35957132, 108591703, 323914688, 955984083, 2795513143, 8108894051, 23354358683, 66838785954, 190211189706, 538567451991, 1517943035326
Offset: 7
Examples
a(7)=8 because there are 8 pairs of chiral heptominoes in 2^4 space. See trunks 1, 6, 8, 12, 13, 19, 27, and 28 in the linked Trunk Generating Functions.
Links
- Robert A. Russell, Table of n, a(n) for n = 7..100
- Robert A. Russell, Trunk Generating Functions
Crossrefs
Programs
-
Mathematica
sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k]; c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1); c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}]; nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}] Drop[CoefficientList[Series[(14 K[x]^6 + 3 K[x]^7 + 6 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 18 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 10 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^3 (38 K[x]^4 + 9 K[x]^5 + 4 K[x]^2 K[-x^2] + 10 K[x]^3 K[-x^2] - 2 K[-x^2]^2 + K[x] K[-x^2]^2) / (8(1-K[x])) + K[x]^6 (5 K[x] + 16 K[x]^2 + 6 K[x]^3 + K[-x^2] + 2 K[x] K[-x^2]) / (2(1-K[x])^2) - K[-x^2]^2 (K[x]^4 + 2 K[x] K[-x^2] + 4 K[x]^2 K[-x^2] + 2 K[-x^2]^2 + 5 K[x] K[-x^2]^2 + K[-x^4] + K[x] K[-x^4]) / (4(1-K[-x^2])) + K[x]^7 (2 + 42 K[x] + 51 K[x]^2 + 24 K[x]^3 + 3 K[-x^2]) / (12(1-K[x])^3) + (K[x] K[x^3]^2) / (3(1-K[x^3])) - K[x]^2 K[-x^2]^2 (2 K[x] + 5 K[x]^3 + 2 K[-x^2] + K[x] K[-x^2]) / (4(1-K[x]) (1-K[-x^2])) - K[-x^2]^4 (8 + K[x] + 8 K[x] K[-x^2]) / (8(1-K[-x^2])^2) + K[x]^9 (17 + 8 K[x]) / (8(1-K[x])^4) - K[x]^5 (1 + 4 K[x]) K[-x^2]^2 / (4(1-K[x])^2 (1-K[-x^2])) + (K[x] K[-x^4]^2) / (4(1-K[-x^4])) + (3 K[x]^10) / (8(1-K[x])^5) - ((K[x]^6 K[-x^2]^2) / (4(1-K[x])^3 (1-K[-x^2]))) - (((1 + K[x]) K[-x^2]^5) / (4(1-K[-x^2])^3)) + ((1 + K[x]) K[-x^2] K[-x^4]^2) / (4(1-K[-x^2]) (1-K[-x^4])) - ((K[x]^2 K[-x^2]^4) / (8(1-K[x]) (1-K[-x^2])^2)), {x,0,nmax}], x], 7]
Formula
G.f.: (14 C(x)^6 + 3 C(x)^7 + 6 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 18 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 10 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^3 (38 C(x)^4 + 9 C(x)^5 + 4 C(x)^2 C(-x^2) + 10 C(x)^3 C(-x^2) - 2 C(-x^2)^2 + C(x) C(-x^2)^2) / (8(1-C(x))) + C(x)^6 (5 C(x) + 16 C(x)^2 + 6 C(x)^3 + C(-x^2) + 2 C(x) C(-x^2)) / (2(1-C(x))^2) - C(-x^2)^2 (C(x)^4 + 2 C(x) C(-x^2) + 4 C(x)^2 C(-x^2) + 2 C(-x^2)^2 + 5 C(x) C(-x^2)^2 + C(-x^4) + C(x) C(-x^4)) / (4(1-C(-x^2))) + C(x)^7 (2 + 42 C(x) + 51 C(x)^2 + 24 C(x)^3 + 3 C(-x^2)) / (12(1-C(x))^3) + (C(x) C(x^3)^2) / (3(1-C(x^3))) - C(x)^2 C(-x^2)^2 (2 C(x) + 5 C(x)^3 + 2 C(-x^2) + C(x) C(-x^2)) / (4(1-C(x)) (1-C(-x^2))) - C(-x^2)^4 (8 + C(x) + 8 C(x) C(-x^2)) / (8(1-C(-x^2))^2) + C(x)^9 (17 + 8 C(x)) / (8(1-C(x))^4) - C(x)^5 (1 + 4 C(x)) C(-x^2)^2 / (4(1-C(x))^2 (1-C(-x^2))) + (C(x) C(-x^4)^2) / (4(1-C(-x^4))) + (3 C(x)^10) / (8(1-C(x))^5) - ((C(x)^6 C(-x^2)^2) / (4(1-C(x))^3 (1-C(-x^2)))) - (((1 + C(x)) C(-x^2)^5) / (4(1-C(-x^2))^3)) + ((1 + C(x)) C(-x^2) C(-x^4)^2) / (4(1-C(-x^2)) (1-C(-x^4))) - ((C(x)^2 C(-x^2)^4) / (8(1-C(x)) (1-C(-x^2))^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.
Comments