A355058 Numbers m such that d(m) mod 6 = 3, where d(m) is the number of divisors of m.
4, 9, 25, 36, 49, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 676, 784, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364
Offset: 1
Examples
Let p be a prime; p^2 has 3 divisors {1, p, p^2}, therefore all squares of primes {4, 9, 25, 49, ...} are in the sequence. 36 is in the sequence because d(36) = 9, and 9 mod 6 = 3. 16 is not in the sequence because it has 5 divisors, and 5 mod 6 = 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[2^12], Mod[DivisorSigma[0, #], 6] == 3 &]
-
PARI
isok(m) = (numdiv(m) % 6) == 3; \\ Michel Marcus, Jul 05 2022
-
Python
from itertools import count, islice from sympy import factorint, prod def A355058_gen(): # generator of terms return map(lambda n:n**2,filter(lambda n:prod((2*e+1)%6 for e in factorint(n).values())%6==3,count(1))) A355058_list = list(islice(A355058_gen(),30)) # Chai Wah Wu, Jul 06 2022
Formula
Sum_{n>=1} 1/a(n) = Pi^2/18 (A086463). - Amiram Eldar, Jul 06 2022
Comments