cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355084 E.g.f. A(x) satisfies A(x) = 1 + log(1+x) * A(2*x).

Original entry on oeis.org

1, 1, 3, 32, 962, 74604, 14102416, 6268777248, 6394217598800, 14703540690658848, 75208658403123879744, 846736815151560907880448, 20804324374762392749905814784, 1107653447201119751335031683041792, 127026805293926861783650032004892737536
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(j-1)*2^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * 2^(n-k) * (k-1)! * binomial(n,k) * a(n-k).

A355088 E.g.f. A(x) satisfies A(x) = 1 + (exp(x) - 1) * A(3*x).

Original entry on oeis.org

1, 1, 7, 199, 21883, 8916991, 13027669147, 66525761289919, 1164200761777844203, 68750129286493392353311, 13532431689375421261723713787, 8789916574829303798007959322784639, 18685340957126032386127459367999667264523
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 3^j*binomial(i, j)*v[j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * binomial(n,k) * a(k).
Showing 1-2 of 2 results.