cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355090 Square array A(n, k), n >= 0, k > 0, read by antidiagonals upwards; A(n, k) is the unique m such that n/k = fusc(m)/fusc(m+1) (where fusc is Stern's diatomic series A002487).

Original entry on oeis.org

0, 1, 0, 3, 2, 0, 7, 1, 4, 0, 15, 5, 6, 8, 0, 31, 3, 1, 2, 16, 0, 63, 11, 9, 14, 12, 32, 0, 127, 7, 13, 1, 10, 4, 64, 0, 255, 23, 3, 17, 30, 2, 24, 128, 0, 511, 15, 19, 5, 1, 6, 28, 8, 256, 0, 1023, 47, 27, 29, 33, 62, 18, 20, 48, 512, 0, 2047, 31, 7, 3, 25, 1, 22, 2, 4, 16, 1024, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 18 2022

Keywords

Comments

The binary expansion of A(n, k) encodes the position of n/k (> 0) in the Calkin-Wilf tree.

Examples

			Square array A(n, k) begins:
  n\k|      1    2    3    4    5    6    7    8    9    10    11    12
  ---+-----------------------------------------------------------------
    0|      0    0    0    0    0    0    0    0    0     0     0     0
    1|      1    2    4    8   16   32   64  128  256   512  1024  2048
    2|      3    1    6    2   12    4   24    8   48    16    96    32
    3|      7    5    1   14   10    2   28   20    4    56    40     8
    4|     15    3    9    1   30    6   18    2   60    12    36     4
    5|     31   11   13   17    1   62   22   26   34     2   124    44
    6|     63    7    3    5   33    1  126   14    6    10    66     2
    7|    127   23   19   29   25   65    1  254   46    38    58    50
    8|    255   15   27    3   21    9  129    1  510    30    54     6
    9|    511   47    7   35   61    5   49  257    1  1022    94    14
   10|   1023   31   39   11    3   13   57   17  513     1  2046    62
   11|   2047   95   55   59   67  125   37   41   97  1025     1  4094
   12|   4095   63   15    7   51    3   45    5    9    33  2049     1
		

Crossrefs

Programs

  • PARI
    A(x,y) = { if (x==0, 0, my (v=0,t=1,a=0,b=1,c=1,d=0); while (1, my (m=a+c, n=b+d); if (x*n==y*m, return (t+v), x*n
    				

Formula

A(m*n, m*k) = A(n, k) for any m > 0.
A(k, n) = A054429(A(n, k)) for any n, k > 0.
A(0, k) = 0.
A(1, k) = 2^(k-1).
A(n, 1) = 2^n - 1.
A(n, n+1) = A000918(n+1).
A(A002487(n), A002487(n+1)) = n.