cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355117 a(1) = 1; a(n+1) = Sum_{d|n} 4^(n/d - 1) * a(d).

Original entry on oeis.org

1, 1, 5, 21, 89, 345, 1405, 5501, 22033, 87649, 350405, 1398981, 5596345, 22373561, 89492141, 357930301, 1431711857, 5726679153, 22906712645, 91626189381, 366504720137, 1466016390873, 5864065352173, 23456251396589, 93825005578001, 375299982311441, 1501199928316661
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[4^((n - 1)/d - 1) a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 27}]

Formula

G.f.: x * ( 1 + Sum_{n>=1} a(n) * x^n / (1 - 4 * x^n) ).
a(n) ~ 4^(n-1) / 3.