cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355133 E.g.f. A(x) satisfies A(x) = 1 + 2 * log(1+x) * A(2 * log(1+x)).

Original entry on oeis.org

1, 2, 14, 292, 16836, 2517888, 927979616, 811623678304, 1639230314891936, 7494183556478948928, 76401967141928846136512, 1716972732272402536841957760, 84279193103775042893631925450624, 8968818994749615710061662692132983296
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*2^j*stirling(i, j, 1)*v[j])); v;

Formula

E.g.f. A(x) satisfies: A(exp(x) - 1) = 1 + 2*x*A(2*x).
a(0) = 1; a(n) = Sum_{k=1..n} k * 2^k * Stirling1(n,k) * a(k-1).

A355214 E.g.f. A(x) satisfies A'(x) = 1 + A(2 * log(1+x))/2.

Original entry on oeis.org

1, 1, 1, 0, -8, -64, -600, -14104, -1170120, -248815984, -115219852880, -111345726833056, -220485042541083808, -885633596688107274496, -7173767949430448755993856, -116777715174661360994951467008, -3812515511649504447203183936705536
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, 2^(j-1)*stirling(i, j, 1)*v[j])); v;

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} 2^(k-1) * Stirling1(n,k) * a(k).
Showing 1-2 of 2 results.