cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355210 E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1)).

Original entry on oeis.org

1, 2, 10, 106, 2234, 90570, 6986490, 1026623306, 289475035770, 158101579596106, 168768027732007674, 354715566244066506058, 1476006372586517922472826, 12205618234758923312503183690, 201082085503026084194089831880698
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, 2^j*stirling(i, j, 2)*v[j])); v;

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} 2^k * Stirling2(n,k) * a(k).

A355128 E.g.f. A(x) satisfies A(x) = 1 + x * A(2 * (exp(x) - 1)).

Original entry on oeis.org

1, 1, 4, 54, 1928, 167770, 34128972, 15867798142, 16621680303888, 38813463431274402, 200266228576991017940, 2265670919773168963168454, 55816752493202168837392763544, 2976116188645489878229876218205674, 341574630434025162744892242114482410332
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*sum(j=0, i-1, 2^j*stirling(i-1, j, 2)*v[j+1])); v;

Formula

a(0) = 1; a(n) = n * Sum_{k=0..n-1} 2^k * Stirling2(n-1,k) * a(k).
a(n) = n * A355131(n-1) for n>0.
Showing 1-2 of 2 results.