cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355143 Product of middle divisors of n, or 0 if there are no middle divisors of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 6, 0, 2, 3, 0, 0, 12, 0, 0, 15, 4, 0, 3, 0, 20, 0, 0, 0, 24, 5, 0, 0, 28, 0, 30, 0, 4, 0, 0, 35, 6, 0, 0, 0, 40, 0, 42, 0, 0, 45, 0, 0, 48, 7, 5, 0, 0, 0, 54, 0, 56, 0, 0, 0, 60, 0, 0, 63, 8, 0, 66, 0, 0, 0, 70, 0, 432, 0, 0, 0, 0, 77, 0, 0, 80
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2022

Keywords

Examples

			For n = 6 the middle divisors of 6 are 2 and 3, the product of them is 2*3 = 6, so a(6) = 6.
For n = 7 there are no middle divisors of 7, so a(7) = 0.
For n = 8 there is only one middle divisor of 8, the 2, so a(8) = 2.
For n = 72 the middle divisors of 72 are [6, 8, 9], the product of them is 6*8*9 = 432, so a(72) = 432.
		

Crossrefs

Row products of A299761.
Indices of zeros give A071561.
Indices of nonzeros give A071562.

Programs

  • Mathematica
    a[n_] := If[(p = Product[If[Sqrt[n/2] <= d < Sqrt[2*n], d, 1], {d, Divisors[n]}]) == 1 && n > 2, 0, p]; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(v=select(x->((x >= sqrt(n/2)) && (x < sqrt(n*2))), divisors(n))); if (#v, vecprod(v), 0); \\ Michel Marcus, Aug 04 2022

Extensions

More terms from Amiram Eldar, Jun 21 2022