A355143 Product of middle divisors of n, or 0 if there are no middle divisors of n.
1, 1, 0, 2, 0, 6, 0, 2, 3, 0, 0, 12, 0, 0, 15, 4, 0, 3, 0, 20, 0, 0, 0, 24, 5, 0, 0, 28, 0, 30, 0, 4, 0, 0, 35, 6, 0, 0, 0, 40, 0, 42, 0, 0, 45, 0, 0, 48, 7, 5, 0, 0, 0, 54, 0, 56, 0, 0, 0, 60, 0, 0, 63, 8, 0, 66, 0, 0, 0, 70, 0, 432, 0, 0, 0, 0, 77, 0, 0, 80
Offset: 1
Keywords
Examples
For n = 6 the middle divisors of 6 are 2 and 3, the product of them is 2*3 = 6, so a(6) = 6. For n = 7 there are no middle divisors of 7, so a(7) = 0. For n = 8 there is only one middle divisor of 8, the 2, so a(8) = 2. For n = 72 the middle divisors of 72 are [6, 8, 9], the product of them is 6*8*9 = 432, so a(72) = 432.
Crossrefs
Programs
-
Mathematica
a[n_] := If[(p = Product[If[Sqrt[n/2] <= d < Sqrt[2*n], d, 1], {d, Divisors[n]}]) == 1 && n > 2, 0, p]; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
-
PARI
a(n) = my(v=select(x->((x >= sqrt(n/2)) && (x < sqrt(n*2))), divisors(n))); if (#v, vecprod(v), 0); \\ Michel Marcus, Aug 04 2022
Extensions
More terms from Amiram Eldar, Jun 21 2022