A355165 a(n) = exp(-1/4) * Sum_{k>=0} (4*k + 2)^n / (4^k * k!).
1, 3, 13, 79, 601, 5339, 53861, 607527, 7560625, 102637235, 1506225085, 23726435583, 398852249097, 7120170905995, 134408217821205, 2673140092099543, 55832167947587425, 1221199519275467107, 27902127744298836845, 664446811342185649583, 16457968670922936733113, 423242969435491221774907
Offset: 0
Keywords
Programs
-
Mathematica
nmax = 21; CoefficientList[Series[Exp[2 x + (Exp[4 x] - 1)/4], {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + Sum[Binomial[n - 1, k - 1] 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}] Table[Sum[Binomial[n, k] 2^(n + k) BellB[k, 1/4], {k, 0, n}], {n, 0, 21}]
Formula
E.g.f.: exp(2*x + (exp(4*x) - 1) / 4).
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^(k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * A004213(k).
a(n) ~ 2^(2*n+1) * n^(n + 1/2) * exp(n/LambertW(4*n) - n - 1/4) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^(n + 1/2)). - Vaclav Kotesovec, Jun 27 2022