A355173 The Fuss-Catalan triangle of order 1, read by rows. Related to binary trees.
1, 0, 1, 0, 1, 2, 0, 1, 3, 5, 0, 1, 4, 9, 14, 0, 1, 5, 14, 28, 42, 0, 1, 6, 20, 48, 90, 132, 0, 1, 7, 27, 75, 165, 297, 429, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 0, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796
Offset: 0
Examples
Table T(n, k) begins: [0] [1] [1] [0, 1] [2] [0, 1, 2] [3] [0, 1, 3, 5] [4] [0, 1, 4, 9, 14] [5] [0, 1, 5, 14, 28, 42] [6] [0, 1, 6, 20, 48, 90, 132] [7] [0, 1, 7, 27, 75, 165, 297, 429] [8] [0, 1, 8, 35, 110, 275, 572, 1001, 1430] [9] [0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862] Seen as an array reading the diagonals starting from the main diagonal: [0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ... A000108 [1] 0, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, ... A000245 [2] 0, 1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, ... A099376 [3] 0, 1, 5, 20, 75, 275, 1001, 3640, 13260, 48450, 177650, ... A115144 [4] 0, 1, 6, 27, 110, 429, 1638, 6188, 23256, 87210, 326876, ... A115145 [5] 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, ... A000588 [6] 0, 1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, ... A115147 [7] 0, 1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, ... A115148
Crossrefs
A000108 (main diagonal), A000245 (subdiagonal), A002057 (diagonal 2), A000344 (diagonal 3), A000027 (column 2), A000096 (column 3), A071724 (row sums), A000958 (alternating row sums), A262394 (main diagonal of array).
Programs
-
Python
from functools import cache from itertools import accumulate @cache def Trow(n: int) -> list[int]: if n == 0: return [1] if n == 1: return [0, 1] row = Trow(n - 1) + [Trow(n - 1)[n - 1]] return list(accumulate(row)) for n in range(11): print(Trow(n))
Formula
The general formula for the Fuss-Catalan triangles is, for m >= 0 and 0 <= k <= n:
FCT(n, k, m) = (m*(n - k) + m + 1)*(m*n + k - 1)!/((m*n + 1)!*(k - 1)!) for k > 0 and FCT(n, 0, m) = 0^n. The case considered here is T(n, k) = FCT(n, k, 1).
T(n, k) = (n - k + 2)*(n + k - 1)!/((n + 1)!*(k - 1)!) for k > 0; T(n, 0) = 0^n.
The g.f. of row n of the FC-triangle of order m is 0^n + (x - (m + 1)*x^2) / (1 - x)^(m*n + 2), thus:
T(n, k) = [x^k] (0^n + (x - 2*x^2)/(1 - x)^(n + 2)).
Comments