A355216 E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1))/2.
1, 1, 3, 19, 239, 5675, 249983, 20404811, 3112376543, 898693573515, 498042936169343, 536255530818837835, 1132713758105613132319, 4726517343060928547800331, 39145565125819857567685815231, 645447728030234045716450604490955
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..82
Programs
-
PARI
a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, 2^(j-1)*stirling(i, j, 2)*v[j])); v;
Formula
a(1) = 1; a(n+1) = Sum_{k=1..n} 2^(k-1) * Stirling2(n,k) * a(k).