A355226 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-halved cube graph.
1, 1, 1, 2, 1, 4, 1, 8, 4, 1, 16, 40, 1, 32, 256, 480, 120, 1, 64, 1344, 11200, 36400, 40320, 13440, 1920, 240, 1, 128, 6336, 156800, 2104480, 15644160, 63672000, 136970880, 147748560, 76396800, 21087360, 4273920, 840000, 161280, 28800, 3840, 240
Offset: 1
Examples
Triangle begins: k = 0 1 2 n = 1: 1, 1 n = 2: 1, 2 n = 3: 1, 4 n = 4: 1, 8, 4 n = 5: 1, 16, 40 The 4-halved cube graph has independence polynomial 1 + 8*t + 4*t^2.
Links
- Eric Weisstein's World of Mathematics, Independence polynomial
- Eric Weisstein's World of Mathematics, Halved cube graph
Programs
-
Sage
from sage.graphs.independent_sets import IndependentSets from collections import Counter def row(n): if n == 1: g = graphs.CompleteGraph(1) else: g = graphs.HalfCube(n) setCounts = Counter() for Iset in IndependentSets(g): setCounts[len(Iset)] += 1 outList = [0] * len(setCounts) for n in range(0,len(setCounts)): outList[n] = setCounts[n] return outList
Comments