A355266 Triangle read by rows, T(n, k) = (-1)^(n-k)*Bell(k)*Stirling1(n+1, k+1), for 0 <= k <= n.
1, 1, 1, 2, 3, 2, 6, 11, 12, 5, 24, 50, 70, 50, 15, 120, 274, 450, 425, 225, 52, 720, 1764, 3248, 3675, 2625, 1092, 203, 5040, 13068, 26264, 33845, 29400, 16744, 5684, 877, 40320, 109584, 236248, 336420, 336735, 235872, 110838, 31572, 4140
Offset: 0
Examples
Triangle T(n, k) begins: [0] 1; [1] 1, 1; [2] 2, 3, 2; [3] 6, 11, 12, 5; [4] 24, 50, 70, 50, 15; [5] 120, 274, 450, 425, 225, 52; [6] 720, 1764, 3248, 3675, 2625, 1092, 203; [7] 5040, 13068, 26264, 33845, 29400, 16744, 5684, 877;
Crossrefs
Programs
-
Maple
T := (n, k) -> (-1)^(n-k)*combinat:-bell(k)*Stirling1(n+1, k+1): seq(seq(T(n, k), k = 0..n), n = 0..8);
-
Python
from functools import cache @cache def b(n: int, k=0): return int(n < 1) or k * b(n - 1, k) + b(n - 1, k + 1) @cache def s(n: int) -> list[int]: if n == 0: return [1] row = [0] + s(n - 1) for k in range(1, n): row[k] = row[k] + (n - 1) * row[k + 1] return row def A355266_row(n): return [s * b(k - 1) for k, s in enumerate(s(n + 1))][1:] for n in range(9): print(A355266_row(n))