cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A070779 Expansion of e.g.f.: (exp(x/(1-x))*(2-x)-1+x)/(1-x)^3.

Original entry on oeis.org

1, 5, 28, 185, 1426, 12607, 125882, 1401409, 17209234, 231033431, 3365440882, 52855452817, 890097287834, 15996379554079, 305519496498106, 6178746162639617, 131885301216119842, 2962568890205560999, 69853182607494217154, 1724761580035969997521, 44501146220521229674282
Offset: 0

Views

Author

Karol A. Penson, May 06 2002

Keywords

Comments

Equal to the number of strictly partial permutations on [n]; i.e. equal to the cardinality of the complement I_n\S_n, where I_n and S_n denote the symmetric inverse monoid and symmetric group on [n]. - James East, May 03 2007
Former name was "E.g.f.: (exp(x/(1-x))-1)/(1-x)." However, that would be the e.g.f. with offset 1 rather than 0. - Robert Israel, Jan 03 2019

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(n + 3)*(n + 2)^2*a(n) - 3*(n + 3)^2*a(n + 1) + (3*n + 11)*a(n + 2) - a(n + 3)=0, a(0)=1,a(1)=5,a(2)=28},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Jan 03 2019
    # alternative
    A070779 := proc(n)
        n!*(n+1)^2*hypergeom([1,-n],[2,2],-1) ;
        simplify(%) ;
    end proc: # R. J. Mathar, Jul 16 2020
  • Mathematica
    Table[(n + 1)! (LaguerreL[n + 1, -1] -1), {n, 0, 20}] (* Vincenzo Librandi, Jan 04 2019 *)
    With[{nn=20},CoefficientList[Series[(Exp[x/(1-x)](2-x)-1+x)/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 07 2020 *)
  • Sage
    @cached_function
    def a(n):
        if n < 3: return [1, 5, 28][n]
        return n*(n-1)^2*a(n-3)-3*n^2*a(n-2)+(3*n+2)*a(n-1)
    [a(n) for n in (0..20)] # Peter Luschny, Jan 04 2019

Formula

In Maple notation, a(n) = n! *(n+1)^2 *hypergeom([1, -n], [2, 2], -1).
a(n) = (n+1)!*(LaguerreL(n+1, -1)-1). - Vladeta Jovovic, Oct 24 2003
a(n) = A002720(n) - A000142(n) = Sum_{k=0..n-1} k!*binomial(n,k)^2. - James East, May 03 2007
D-finite with recurrence a(n) = (3*n+2)*a(n-1) - 3*n^2*a(n-2) + n*(n-1)^2*a(n-3). - Robert Israel, Jan 03 2019
a(n) = Sum_{k=0..n} A355266(n+1, k+1). - Mélika Tebni, Jul 07 2022

Extensions

New description from Vladeta Jovovic, Apr 10 2003
Edited by Robert Israel, Jan 03 2019
Definition clarified by Harvey P. Dale, Sep 07 2020
Showing 1-1 of 1 results.