A355281 Number of pairs of nested Dyck paths from (0,0) to (n,n) such that the upper path only touches the diagonal at its endpoints.
1, 1, 2, 9, 55, 400, 3266, 28999, 274537, 2734885, 28401315, 305352146, 3380956839, 38394091370, 445702108969, 5274935433915, 63507021523471, 776347636736261, 9621502184089320, 120726786082609207, 1531938384684090884, 19639252409244653785, 254143269904958943103, 3317204158078663935592
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..841
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, b(n-1)*((4*n)^2-4)/(n+2)/(n+3)) end: a:= proc(n) option remember; b(n)-add(a(n-i)*b(i), i=1..n-1) end: seq(a(n), n=0..23); # Alois P. Heinz, Jun 26 2022
-
Mathematica
nmax = 23; c = CatalanNumber; B[x_] = Sum[(c[n] c[n+2] - c[n+1]^2) x^n, {n, 0, nmax}]; CoefficientList[2 - 1/B[x] + O[x]^(nmax+1), x] (* Jean-François Alcover, Jul 06 2022 *)
Comments