A355303 a(n) is the smallest integer that has n normal undulating divisors.
1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 126, 60, 320, 144, 168, 120, 252, 180, 560, 240, 630, 420, 780, 360, 1890, 960, 1920, 720, 1560, 1080, 1260, 1440, 1680, 4368, 2160, 3240, 3120, 3360, 4320, 2520, 6300, 6120, 8640, 6240, 13104, 5040, 12480, 9360, 12240, 7560
Offset: 1
Examples
16 has 5 divisors: {1, 2, 4, 8, 16}, all of which are normal undulating integers; no positive integer smaller than 16 has five normal undulating divisors, hence a(5) = 16. 126 has 12 divisors: {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}; only 126 is not normal undulating; no positive integer smaller than 126 has eleven normal undulating divisors, hence a(11) = 126.
Links
- David A. Corneth, Table of n, a(n) for n = 1..402
Programs
-
Mathematica
nuQ[n_] := AllTrue[(s = Sign[Differences[IntegerDigits[n]]]), # != 0 &] && AllTrue[Differences[s], # != 0 &]; f[n_] := DivisorSum[n, 1 &, nuQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[50, 10^5] (* Amiram Eldar, Jun 29 2022 *)
-
PARI
isok(m) = if (m<10, return(1)); my(d=digits(m), dd = vector(#d-1, k, sign(d[k+1]-d[k]))); if (#select(x->(x==0), dd), return(0)); my(pdd = vector(#dd-1, k, dd[k+1]*dd[k])); #select(x->(x>0), pdd) == 0; \\ A355301 a(n) = my(k=1); while (sumdiv(k, d, isok(d)) != n, k++); k; \\ Michel Marcus, Jun 30 2022
Extensions
Terms a(11) and beyond from Amiram Eldar, Jun 29 2022
Comments