cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355334 Triangle read by rows: T(n,k) is the number of unlabeled graphs with n nodes and bipartite dimension (or biclique covering number) k, 0 <= k < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 0, 1, 6, 20, 7, 0, 1, 9, 61, 80, 5, 0, 1, 12, 159, 650, 221, 1, 0, 1, 16, 381, 4710, 6866, 372, 0, 0, 1, 20, 832, 29921, 183618, 59950, 326, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jun 29 2022

Keywords

Examples

			Triangle begins:
  n\k | 0  1   2     3      4     5   6  7  8
  ----+--------------------------------------
   1  | 1
   2  | 1  1
   3  | 1  2   1
   4  | 1  4   6     0
   5  | 1  6  20     7      0
   6  | 1  9  61    80      5     0
   7  | 1 12 159   650    221     1   0
   8  | 1 16 381  4710   6866   372   0  0
   9  | 1 20 832 29921 183618 59950 326  0  0
		

Crossrefs

Cf. A000088 (row sums), A355333, A355335, A355336.
Columns: A000012 (k=0), A002620 (k=1).

A355335 Triangle read by rows: T(n,k) is the number of unlabeled connected graphs with n nodes and bipartite dimension (or biclique covering number) k, 0 <= k < n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 4, 0, 0, 2, 13, 6, 0, 0, 3, 38, 67, 4, 0, 0, 3, 94, 550, 205, 1, 0, 0, 4, 214, 3996, 6543, 360, 0, 0, 0, 4, 441, 25037, 176012, 59266, 320, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jun 29 2022

Keywords

Examples

			Triangle begins:
  n\k | 0  1   2     3      4     5   6  7  8
  ----+--------------------------------------
   1  | 1
   2  | 0  1
   3  | 0  1   1
   4  | 0  2   4     0
   5  | 0  2  13     6      0
   6  | 0  3  38    67      4     0
   7  | 0  3  94   550    205     1   0
   8  | 0  4 214  3996   6543   360   0  0
   9  | 0  4 441 25037 176012 59266 320  0  0
		

Crossrefs

Cf. A001349 (row sums), A004526 (column k=1), A355334, A355336.

Formula

T(n,1) = floor(n/2) = A004526(n).
Showing 1-2 of 2 results.