A355356 G.f. A(x) satisfies: x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
1, 0, 1, 3, 10, 28, 79, 216, 603, 1702, 4933, 14620, 44287, 136352, 424858, 1334162, 4211572, 13344072, 42412667, 135217722, 432483522, 1387929369, 4469341807, 14439523193, 46795072968, 152076428228, 495460089510, 1617787324674, 5292984017236, 17348743335252
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x^2 + 3*x^3 + 10*x^4 + 28*x^5 + 79*x^6 + 216*x^7 + 603*x^8 + 1702*x^9 + 4933*x^10 + 14620*x^11 + 44287*x^12 + ... where x^2 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... also, x^2*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ... where P(x) is the partition function and begins P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
Programs
-
PARI
{a(n) = my(A=[1,0,1],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9)); A[#A] = polcoeff( x^2 - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]} for(n=0,30,print1(a(n),", "))
Formula
G.f. A(x) satisfies:
(1) x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) x^2*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
Comments