cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355364 G.f. A(x) satisfies: x^2*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 0, 1, 3, 11, 34, 110, 350, 1147, 3800, 12836, 43929, 152285, 533205, 1883187, 6698612, 23974179, 86258459, 311811314, 1131863444, 4124127216, 15078422405, 55301519095, 203405409935, 750122683729, 2773048061073, 10274442343829, 38147288401915
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2022

Keywords

Comments

Equals the antidiagonal sums of A355360; a(n) = Sum_{k=0..n} A355360(n-k,k).

Examples

			G.f.: A(x) = 1 + x^2 + 3*x^3 + 11*x^4 + 34*x^5 + 110*x^6 + 350*x^7 + 1147*x^8 + 3800*x^9 + 12836*x^10 + 43929*x^11 + 152285*x^12 + ...
where
x^2*A(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,0],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x^2*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) x^2*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -x^2*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) x^2*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 3.92217771004386918... and c = 0.52890084997249... - Vaclav Kotesovec, Jul 03 2025