A355394 Number of integer partitions of n such that, for all parts x, x - 1 or x + 1 is also a part.
1, 0, 0, 1, 1, 3, 3, 6, 6, 10, 11, 16, 18, 25, 30, 38, 47, 59, 74, 90, 112, 136, 171, 203, 253, 299, 372, 438, 536, 631, 767, 900, 1085, 1271, 1521, 1774, 2112, 2463, 2910, 3389, 3977, 4627, 5408, 6276, 7304, 8459, 9808, 11338, 13099, 15112, 17404, 20044, 23018, 26450, 30299, 34746, 39711, 45452, 51832
Offset: 0
Keywords
Examples
The a(0) = 1 through a(9) = 11 partitions: () . . (21) (211) (32) (321) (43) (332) (54) (221) (2211) (322) (3221) (432) (2111) (21111) (2221) (22211) (3222) (3211) (32111) (3321) (22111) (221111) (22221) (211111) (2111111) (32211) (222111) (321111) (2211111) (21111111)
Links
- Lucas A. Brown, Table of n, a(n) for n = 0..100
- Lucas A. Brown, A355394.py
Crossrefs
These partitions are ranked by A356736.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Function[ptn,!Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
Extensions
a(31)-a(59) from Lucas A. Brown, Sep 04 2022
Comments