cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355401 Triangle read by rows: T(n, k) = Sum_{i=1..n-k} inverse-q-binomial(n-k-1, i-1) * q-binomial(n-2+i, n-2) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0, here q = 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 64, 28, 7, 1, 0, 4096, 960, 140, 15, 1, 0, 1048576, 126976, 9920, 620, 31, 1, 0, 1073741824, 66060288, 2666496, 89280, 2604, 63, 1, 0, 4398046511104, 136365211648, 2796552192, 48377856, 755904, 10668, 127, 1
Offset: 0

Views

Author

Werner Schulte, Jun 30 2022

Keywords

Comments

The Gaussian or q-binomial coefficients [n, k]_q for 0 <= k <= n are the basis for lower triangular matrices T_q, which are created by an unusual formula. This triangle is the result for q = 2. The general construction is as follows:
For some fixed integer q define the infinite lower triangular matrix M_q by M(q; n, 0) = 0 for n > 0, and M(q; n, n) = 1 for n >= 0, and M(q; n, k) = M(q; n-1, k-1) + q^(k-1) * M(q; n-1, k) for 0 < k < n. Then the matrix inverse I_q = M_q^(-1) exists, and M(q; n, k) = [n-1, k-1]q for 0 < k <= n. Next define the triangle T_q by T(q; n, k) = Sum{i=0..n-k} I(q; n-k, i) * M(q; n-1+i, n-1) for 0 < k <= n and T(q; n, 0) = 0^n for n >= 0. For q = 1 see A097805 and for q = 2 see this triangle.
Conjecture: T(q; n+1, 1) = q^(n*n-n) for n >= 0.
Conjecture: T(q; n, k) = q^((n-k-1)*(n-k)) * M(q; n, k) for 0 <= k <= n.
Conjecture: Define g(q; n) = -Sum_{i=0..n-1} [n, i]_q * g(q; i) * T(q; n+1-i, 1) for n > 0 with g(q; 0) = 1. Then the matrix inverse R_q = T_q^(-1) is given by R(q; n, k) = g(q; n-k) * M(q; n, k) for 0 <= k <= n, and g(q; n) = R(q; n+1, 1) for n >= 0.

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k :  0              1             2           3         4       5      6    7  8
==================================================================================
  0 :  1
  1 :  0              1
  2 :  0              1             1
  3 :  0              4             3           1
  4 :  0             64            28           7         1
  5 :  0           4096           960         140        15       1
  6 :  0        1048576        126976        9920       620      31      1
  7 :  0     1073741824      66060288     2666496     89280    2604     63    1
  8 :  0  4398046511104  136365211648  2796552192  48377856  755904  10668  127  1
  etc.
Matrix inverse R(n, k) for 0 <= k <= n starts:
n\k :  0           1          2         3       4     5    6  7
===============================================================
  0 :  1
  1 :  0           1
  2 :  0          -1          1
  3 :  0          -1         -3         1
  4 :  0         -29         -7        -7       1
  5 :  0       -2561       -435       -35     -15     1
  6 :  0     -814309     -79391     -4495    -155   -31    1
  7 :  0  -944455609  -51301467  -1667211  -40455  -651  -63  1
  etc.
		

Crossrefs

Cf. A022166, A053763 (column 1), A135950.

Formula

Conjecture: T(n+1, 1) = A053763(n) = 2^(n*n - n) for n >= 0.
Conjecture: T(n, k) = 2^((n-k-1) * (n-k)) * A022166(n-1, k-1) for 0 < k <= n, and T(n, 0) = 0^n for n >= 0.
Conjecture: Define g(n) = -Sum_{i=0..n-1} A022166(n, i) * g(i) * T(n+1-i, 1) for n > 0 with g(0) = 1. Then matrix inverse R = T^(-1) is given by R(n, 0) = 0^n for n >= 0, and R(n, k) = g(n-k) * A022166(n-1, k-1) for 0 < k <= n, and g(n) = R(n+1, 1) for n >= 0.