A355401 Triangle read by rows: T(n, k) = Sum_{i=1..n-k} inverse-q-binomial(n-k-1, i-1) * q-binomial(n-2+i, n-2) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0, here q = 2.
1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 64, 28, 7, 1, 0, 4096, 960, 140, 15, 1, 0, 1048576, 126976, 9920, 620, 31, 1, 0, 1073741824, 66060288, 2666496, 89280, 2604, 63, 1, 0, 4398046511104, 136365211648, 2796552192, 48377856, 755904, 10668, 127, 1
Offset: 0
Examples
Triangle T(n, k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 8 ================================================================================== 0 : 1 1 : 0 1 2 : 0 1 1 3 : 0 4 3 1 4 : 0 64 28 7 1 5 : 0 4096 960 140 15 1 6 : 0 1048576 126976 9920 620 31 1 7 : 0 1073741824 66060288 2666496 89280 2604 63 1 8 : 0 4398046511104 136365211648 2796552192 48377856 755904 10668 127 1 etc. Matrix inverse R(n, k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 =============================================================== 0 : 1 1 : 0 1 2 : 0 -1 1 3 : 0 -1 -3 1 4 : 0 -29 -7 -7 1 5 : 0 -2561 -435 -35 -15 1 6 : 0 -814309 -79391 -4495 -155 -31 1 7 : 0 -944455609 -51301467 -1667211 -40455 -651 -63 1 etc.
Comments