A355438 Lucas(a(n)) is least Lucas number beginning with n.
1, 0, 2, 3, 13, 23, 4, 14, 19, 24, 5, 10, 15, 39, 20, 25, 49, 6, 11, 35, 59, 16, 64, 21, 45, 69, 26, 50, 7, 31, 55, 12, 36, 60, 17, 151, 41, 65, 22, 156, 46, 70, 27, 94, 51, 252, 8, 32, 166, 56, 190, 13, 281, 37, 305, 61, 18, 85, 42, 109, 310, 66, 267, 23, 224, 47, 181, 71, 138, 339
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..4000 from Michel Marcus)
- Ron Knott, Every number starts some Fibonacci Number, The Mathematical Magic of the Fibonacci Numbers.
Programs
-
PARI
L(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032 isok(k, dn) = my(dk=digits(L(k))); if (#dk >= #dn, Vec(dk, #dn) == dn); a(n) = my(k=0, dn=digits(n)); while (!isok(k, dn), k++); k;
-
Python
def aupton(nn): ans, f, g, k = dict(), 2, 1, 0 while len(ans) < nn: sf = str(f) for i in range(1, len(sf)+1): if int(sf[:i]) > nn: break if sf[:i] not in ans: ans[sf[:i]] = k f, g, k = g, f+g, k+1 return [int(ans[str(i)]) for i in range(1, nn+1)] print(aupton(70)) # Michael S. Branicky, Jul 08 2022
Formula
Trivially a(n) >= log_phi(n-1) for n > 1. Probably upper bounds are obtainable using the theory of linear forms in logarithms. - Charles R Greathouse IV, Jul 08 2022