A355478 The honeybee prime walk: a(n) is the number of closed honeycomb cells after the n-th step of the walk described in the comments.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0
Examples
In the following diagrams the walk is shown at the end of the n-th step, together with the position of the bee (*). . n 0 1 8 28 60 a(n) 0 0 0 1 5 __ __/ 5\*_ * __* __ __ / 4\__/ \__ \ \__ \__/ 3\__ \__ / / \__ \__/ 2\__/ \__ \ \*_ \__ \__/ \__ \__ / / 1\ \ / 1\ \ \ \__/ __/ \__/ __/ / / __/ / __/ \* \__/ \__/ .
Links
- Paolo Xausa, Table of n, a(n) for n = 0..9999
- Paolo Xausa, Animation of terms n = 0..40
- Paolo Xausa, Animation of terms n = 0..749
- Paolo Xausa, Illustration of selected terms up to n = 11000
- Index entries for sequences related to walks
Programs
-
Mathematica
A355478[nmax_]:=Module[{a={0}, walk={{0, 0}}, angle=0, cells}, Do[AppendTo[walk, AngleVector[Last[walk], angle+=If[PrimeQ[n], -1, 1]Pi/3]]; cells=FindCycle[Graph[MapApply[UndirectedEdge, Partition[walk, 2, 1]]], {6}, All]; AppendTo[a, CountDistinct[Map[Sort, Map[First, cells, {2}]]]], {n, nmax}]; a]; A355478[100] (* Paolo Xausa, Jan 04 2023 *)
Comments